Science on the Road: Visiting the Statue of Liberty & Chemical Reactions

In September, we spent a few days in New York City on the island of Manhattan, the city’s historical birthplace and the economic and center. The borough contains several smaller islands including Liberty Island, Ellis Island (shared with New Jersey), Governors Island, and a few others. We were really looking forward to exploring the area and learning more about the history of the area, specifically the Statue of Liberty.

Science of the Statue of Liberty @EvaVarga.netWe arrived in Manhattan via Amtrak train from Boston in the early afternoon. We thereby opted to take in the Statue of Liberty and Ellis Island the following day when we could arrive early and board the first cruise boat. This turned out to be a wise decision as the queue upon our return to the main island was very long.

We grabbed a quick bite at the deli just outside the Courtyard Marriott on 40th where we are staying then hopped the green line express to Bowling Green. Here, we walked the short distance to the boarding area.

We immediately made our way to the National Park Visitor Center after we disembarked. Here we stamped our Park Passport Books and inquired about guided tours. We were in luck in that the first tour would begin in just 20 minutes. We took a few candid photos (Geneva pulled out her sketch book) as we waited.

As we planned to spend all our time in this area, we opted to purchase the New York CityPASS as the majority of the attractions were in this general area. In addition to Statue of Liberty and Ellis Island cruise, the pass provided us with tickets to each of the following attractions:

  • Statue of Liberty & Ellis Island
  • The Empire State Building
  • American Museum of Natural History
  • The Metropolitan Museum of Art
  • Guggenheim Museum 
  • 9/11 Memorial & Museum   

 

Science & Art of Liberty Island and the Statue of Liberty @EvaVarga.netVisiting the Statue of Liberty & Liberty Island

Liberty Island Tour

The group that gathered for the guided tour of Liberty Island was small and thereby very intimate. I am surprised more people don’t take advantage of this opportunity – they are so very informative and best of all, FREE!

As we listened to the park ranger, we learned the idea of gifting the United States with a monument was first proposed in 1865 by Frenchman Edouard de Laboulaye. Sculptor Frederic Auguste Bartholdi was commissioned to design a sculpture ten years later, with a goal of completing the work in 1876 to commemorate the centennial of the American Declaration of Independence.

As a joint venture between the two nations, it was agreed that the American people were to build the pedestal (carved in granite, the pedestal was designed by architect Richard Morris Hunt in 1884), and the French people were responsible for the Statue and its assembly here in the United States.

In France, public fees, various forms of entertainment, and a lottery were among the methods used to raise funds for the project. In the United States, theatrical events, art exhibitions, auctions and prizefights assisted in financing the construction.

Poet Emma Lazarus wrote her famous sonnet “The New Colossus” in 1883 for the art and literary auction to raise funds for the Statue’s pedestal.

Not like the brazen giant of Greek fame,
With conquering limbs astride from land to land;
Here at our sea-washed, sunset gates shall stand
A mighty woman with a torch, whose flame
Is the imprisoned lightning, and her name
Mother of Exiles. From her beacon-hand
Glows world-wide welcome; her mild eyes command
The air-bridged harbor that twin cities frame.
“Keep, ancient lands, your storied pomp!” cries she
With silent lips. “Give me your tired, your poor,
Your huddled masses yearning to breathe free,
The wretched refuse of your teeming shore.
Send these, the homeless, tempest-tost to me,
I lift my lamp beside the golden door!”
 – Emma Lazarus

Science & History of the Statue of Liberty @EvaVarga.netCentennial Gift 10 Years Late

Financing for the pedestal was completed in August 1885, and pedestal construction was finished in April 1886. The Statue was completed in France in July 1884 and arrived in New York Harbor in June 1885 onboard the French frigate “Isere.”

In transit, the Statue was reduced to 350 individual pieces and packed in 214 crates. The Statue was reassembled on her new pedestal in four months’ time. On October 28, 1886, President Grover Cleveland oversaw the dedication of the Statue of Liberty in front of thousands of spectators.

Homage to the Statue of Liberty Supporters

On Liberty Island, there are several small sculptures commemorating several of the key supporters of the Statue of Liberty gift. I really enjoyed hearing the personal triumphs that made it all possible.

  • Edouard de Laboulaye ~ The “Father of the Statue of Liberty.” He provided the idea that would become the Statue.
  • Frederic Auguste Bartholdi ~ The French artist and sculptor who designed the Statue of Liberty Enlightening the World.
  • Alexandre-Gustave Eiffel ~ The architect and engineer who designed the Statue’s internal support.
  • Emma Lazarus ~ The poetess who wrote “The New Colossus” to help raise money for the pedestal’s construction.
  • Joseph Pulitzer ~ The newspaper publisher who helped raise the money needed to complete the pedestal’s construction.

One of the things I overheard many of the young visitors ask as we walked about the island was, “Why is it green?” I knew that when I returned home, this was a concept I wanted to revisit with my children.

Bring it Home ~ Oxidation Reduction Reactions

Why is the Statue of Liberty Blue-Green?

Begin by showing students photographs of the Statue of Liberty.  Ask students to describe the color. Students usually give the right answer: that it is blue or aquamarine (blue-green). Now ask them why it is this color. Students generally have no clue.

Explain that the color is due to the oxidation of copper. Next, show them a piece of rusted metal and point out that the red color of rust is caused by the oxidation of iron.

Science of Oxidation and the Statue of Liberty @EvaVarga.netOxidation Explained with Chemical Equations

Chemical reactions can be divided into two classes: redox (reduction-oxidation) reactions and non-redox reactions based on whether electron transfer process is involved or not. A redox reaction consists of two half reactions: a reductive half in which a reactant accepts electrons and an oxidative half in which a reactant donates electrons.

2Cu + O2 → Cu2O

The nature of a redox reaction is that one reactant donates its electrons to the other reagent. For example, in the oxidation of copper by oxygen, copper atoms donate electrons to an oxygen molecule so copper is oxidized while oxygen is reduced.

The Statue of Liberty gets its blue-green color from patina formed on its copper surface mainly through oxidation along with several other chemical reactions. The main constituent of patina contains a mixture of 3 compounds: Cu4SO4(OH)6 in green; Cu2CO3(OH)2 in green; and Cu3(CO3)2(OH)2 in blue. The following reactions are involved.

2Cu2O + O2 → 4CuO

Cu + S → 4CuS 

The oxidation starts with the formation of copper oxide (Cu2O), which is red or pink in color (equation 1), when copper atoms initially react with oxygen molecules in the air. Copper oxide is further oxidized to copper oxide (CuO), which is black in color (equation 2). In the 19th and early 20th century, coal was the major fuel source for American industry and it usually contains sulfur. Thus, the black copper sulfide (CuS) also forms (equation 3).

2CuO + CO2 + H2O → Cu2CO3(OH)2

3CuO + 2CO2 + H2O → Cu3(CO3)2(OH)2

4CuO + SO3 +3H2O → Cu4SO4(OH)6

Over the years, CuO and CuS slowly reacts with carbon dioxide (CO2) and hydroxide ions (OH-) in water from the air to eventually form Cu2CO3(OH)2 (equation 4) , Cu3(CO3)2(OH)2 (equation 5) and Cu4SO4(OH)6 (equation 6), which constitute the patina. The extent of humidity and the level of sulfur-related air pollution have a significant impact on how fast the patina develops, as well as the relative ratio of the three components.

Take it Further

Can you think of another oxidation reduction reaction? Write out the chemical equations to further describe this process.

 

Carl & Gerty Cori Change the Face of Medicine

In brilliant collaboration, Carl and Gerty Cori studied how the body metabolizes glucose and advanced the understanding of how the body produces and stores energy. Their findings were particularly useful in the development of treatments for diabetes. They were awarded the Noble Prize for their discovery of how glycogen (animal starch) – a derivative of glucose – is broken down and resynthesized in the body, for use as a store and source of energy.

cori cycleThe pair were interested in how the body utilizes energy. The couple spent more than three decades exploring how the human body metabolizes glucose. It was known in the 1920s that faulty sugar metabolism could lead to diabetes, and it was also known that insulin kept the disease in check.

The effect of insulin on blood sugar levels had been observed, but scientists did not understand the biochemical mechanism behind insulin’s effect or how carbohydrates were metabolized. In 1929, the couple described what is now known as the Cori cycle; an important part of metabolism. To put it simply, lactic acid forms when we use our muscles, which is then converted into glycogen in the liver. Glycogen, in turn, is converted into glucose, which is absorbed by muscle cells.

The Cori Cycle

cori cycleThe Cori Cycle refers to the metabolic pathway in which lactate produced by anaerobic glycolysis in the muscles moves via the blood stream to the liver where it it is converted to blood glucose and glycogen. High intensity exercise will mostly get it’s energy or ATP from the pathway of the glycolitic system.  Less intense activity will receive its energy or ATP from the aerobic pathway utilizing the Krebs cycle.

When utilizing the glycolitic system, cycle after cycle, lactate will start to build up.  Lactate from the glycolitic system will diffuse from the muscles into the bloodstream.  It will then be transported into the liver.  In the liver it is converted from lactate back to pyruvate back to glucose, which is then available to the muscles again for energy, this is called gluconeogenesis.  The whole process is called the Cori Cycle.

The more you train with high intensity exercise, the more capable the enzymes and transporters become that are needed for the Cori Cycle.  Your liver gets better at using the lactate, not more efficient (it still needs the same amount of ATP to run the Cori Cycle) but it will do the cycle faster.

Gerty Cori Biography

carl & gerty cori Gerty Radnitz was born in Prague in what was then Austria-Hungary. She received her PhD in medicine from the German University of Prague’s Medical School in 1920. It was here that she met fellow classmate, Carl Ferdinand Cori, whom she married later that same year.

The couple moved to Buffalo, New York in 1922 and began researching metabolic mechanisms. As a woman, Gerty Cori was employed on much less favorable terms than her husband and encountered other forms of gender discrimination throughout her career.

The couple moved to Washington University in St. Louis in 1931 after both were offered positions there. When the Coris were hired at Washington University, she received one-tenth Carl’s salary, even though they were equal partners in the laboratory.

Gerty and her husband continued to investigate how glycogen is broken down into glucose and in 1939 were able to both identify the enzyme that initiates the decomposition and also to use the process to create glycogen in a test tube.

She became full professor in 1947, the same year that she and Carl were awarded the Nobel Prize “for their discovery of the course of the catalytic conversion of glycogen.” She was the first American woman to win the Nobel Prize in Science.

Around this time Gerty was diagnosed with myelosclerosis, a disease of the bone marrow. She died in 1957 at the age of 61.

Bring it Home

Try this hands-on lab from Amy Brown Science to discover The Use of Glucose in Cellular Respiration

Enjoy the Carl and Gerty Cori and Carbohydrate Metabolism commemorative booklet produced by the National Historic Chemical Landmarks program of the American Chemical Society in 2004.

Read about the dip-and-read test strips developed by Helen Free and her husband, Al. Originally designed to test for glucose in urine, the test strips were such an advance that researchers have since combined 10 urine tests to check for ailments like liver failure, urinary tract infections, and others—onto one plastic stick.

Learn more about our digestive system with these hands-on enzyme labs.

Investigate What Types of Food Contain Starch and Protein?

Building Macromolecule is a paper-scissors-tape activity used to help students envision the process of synthesis, building macromolecules out of smaller subunits.

Science Milestones

Visit my Science Milestones page to learn more about scientists whose discoveries and advancements have made a significant difference in our lives or who have advanced our understanding of the world around us.

Interested in learning about others who were born in the month of August? Hop over to Birthday Lessons in August to read posts by other iHomeschool Network bloggers.

 

Groovy Lanterns: A Review of a Groovy Lab Subscription Box

In June Groovy Lab in a Box teamed up with Popular Mechanics for Kids and created the popular Groovy Lab subscription box What’s the Matter? The kids and I recently had the opportunity to review this box and just love everything about it.

Groovy Lab Subscription BoxDisclosure: The links in this blog post are affiliate links. 

What’s Inside June’s Groovy Lab Subscription Box – What’s the Matter?

The first of three Popular Mechanics boxes to launch, What’s the Matter? centers around the scientific properties of ice. It is featured in the June issue of Popular Mechanics for Kids.

My son loves unpacking videos and was eager to humor me for an Instagram sneak peak. Here’s a quick look at everything that was inside the Groovy Lab subscription box

The Groovy Lab subscription box is packed with all the materials you’ll need to do the lab activities. The What’s the Matter kit guides kids through an investigation of the states of matter (gas, liquid and solid) and teaches them about the properties of ice. Each monthly kit comes with an engineering challenge and all the materials needed to complete the project, including a groovy lab notebook that outlines all the activity procedures, asks leading questions, and provides a space for your young STEMist to record their observations.Groovy Lab Subscription Box "What's the Matter?"

Groovy Lab in a Box was named a winner of the Popular Mechanics 2014 Toy Awards, which recognizes the best new toys of the year with a heavy emphasis on STEM-related skills and outdoor or imaginative play. Recipients of the Toy Awards encourage problem solving, inspire creativity, spark imagination, and spur mischief. And they’re fun!

Our Favorite What’s the Matter Activity

There are several well designed activities in the Groovy Lab subscription box. Each activity is purposeful a it develops student understanding of the material to ensure success in the culminating activity. This was our favorite activity, the design challenge whereby students were asked to design the lighting of a “groovy” ice hotel and build a portable lantern out of ice.

This was a fun challenge to undertake and my daughter delighted in brainstorming ideas and then following through with her vision. She chose an aluminum tea tin for the structure as it was rectangular and inside placed a small measuring cup (a little larger than a shot glass) for the interior space for the light. She used botanicals and colored layers for appeal.groovylanterns

There were a couple of small challenges along the way, the biggest of which was getting the lantern out of the tin once it had frozen. The rim of the tin was indented a little to accommodate a lid and it was thereby necessary to melt more of the external side of the lantern than she had desired. Not deterred, “I want to do this again!”

July’s Groovy Lab Subscription Box – Out To Launch!

Do your STEMists love catapults? The second of three Popular Mechanics boxes, July’s Out to Launch is the perfect fit for them! In the Out To Launch box, your children will learn about the forces of catapults and things that are elastic.

The Engineering Design Challenge will test their engineering skills as they build several types of catapults, using only supplies from their Groovy Lab in a Box. As always, the Out To Launch box will have a groovy lab notebook where your kids can read about the investigations and design challenge. Plus, all subscribers get access to the Beyond…in a Box web portal for additional learning and fun.

Be sure to start your subscription today with FREE SHIPPING so you can receive “Out To Launch” before it ships on July 28th. Save $10 on a 3, 6, or 12 month subscription to Groovy Lab in a Box. 

Science Milestones: The Art and Science of Rube Goldberg

Rube Goldberg was a famous cartoonist who took simple and compound machines which are meant to make tasks easier, and made them overly complex. His cartoons depicted complex machines that worked in an indirect and convoluted way, such as the “Self-Operating Napkin”.

Art and Science of Rube Goldberg @EvaVarga.net

As you raise spoon of soup (A) to your mouth it pulls string (B), thereby jerking ladle (C) which throws cracker (D) past parrot (E). Parrot jumps after cracker and perch (F) tilts, upsetting seeds (G) into pail (H). Extra weight in pail pulls cord (I) which opens and lights automatic cigar lighter (J), setting off sky-rocket (K), which causes sickle (L) to cut string (M) and allow pendulum with attached napkin to swing back and forth thereby wiping off your chin.

Rube Goldberg Physics

When Goldberg showed his “Self-Operating Napkin” machine to his friend, his friend said it would not work. Using what you know about mechanical advantage and work, prove to Goldberg’s friend that the invention will actually work.

Work (in Joules, J) = Force (Newtons, J) x Distance (m)

Mechanical Advantage of a Lever = Distance from fulcrum to the applied force / Distance from fulcrum to weight lifted

You raise your spoon of soup 0.15 meters with 2 Newtons of force. How much work did you do?

The spoon pulls a string as you move it. How much work is transferred?

The string jerks the ladle, which is a lever. The string is attached 10 cm from the fulcrum and the force is applied 0.5 m from the fulcrum. What is the mechanical advantage?

The spoon throws a cracker past a parrot. The parrot jumps after the cracker, applying force to the perch he is sitting on. The perch spins around throwing the seeds into a pail. The perch is another lever. It has a mechanical advantage of 2. If it would take 0.5 J of work to move the seeds 0.1m without the lever, how much force will be needed with the lever?

The extra weight in the pail pulls a cord, which goes around a pulley and opens and lights an automatic cigar lighter. If the pail can apply 3 N of force to the cord, and the pulley system has a mechanical advantage of 2, how much total force can be applied to the match?

The match sets off the rocket, which causes a sickle to cut the string, allowing a pendulum with attached napkin to swing back and forth thereby wiping off your chin. If 3 N of force is needed to strike the match, will the system work?

Discover the amazing resources and contests at Rube Goldberg.

Biography

The Art and Science of Rube Goldberg @EvaVarga.netReuben Lucius “Rube” Goldberg was born on July 4, 1883, in San Francisco, California. He loved to draw and received some basic art instruction when he worked with a sign painter as a young teen. Rather than pursue a career in art, though, he followed his father’s advice and attended the University of California at Berkeley, where he earned his degree in engineering.

Mapping out sewer pipes and water mains in San Francisco didn’t hold Rube’s interest for long, though. He began creating cartoons for local San Francisco papers. He eventually moved to New York where he landed a job as a cartoonist for the Evening Mail.

He used his engineering background to create funny cartoons featuring complicated machines that were described as new inventions to accomplish easy, straightforward tasks through a series of convoluted steps involving chain reactions. The public quickly fell in love with Rube’s inventions.

His work became popular nationwide, as his cartoons were syndicated in hundreds of newspapers across the country. The art world also loved his works, some of which were displayed in the Museum of Modern Art in New York City. Rube even made it to Hollywood, where his move script “Soup to Nuts” introduced a trio who would soon become famous as the Three Stooges.

Bring It Home

Check out the following activities to learn more about Rube Goldberg and his work:

Dive a little deeper into the history by watching this video that explores the man behind the machines.

If you have a smartphone or a tablet, you can purchase and download Rube Works, a fun game that challenges you to build a virtual Rube Goldberg machine.

Make your own homemade Rube Goldberg machine! Check out Make a Rube Goldberg Machine for ideas to help you get started.

A Rube Goldberg culminating project will be included in the Physics Logic: Simple Machines & Laws of Motion curriculum to be released soon.

Science MilestonesYou may also be interested in learning about other inventors and scientists who have made an impact in our lives.

Science Task Cards: Engage, Excite, & Enrich Student Learning

As teachers and parents, aren’t we always looking for methods to get students to be critical thinkers and inquirers? As home educators, many of us also strive to develop traits of independent learners. Students who are capable of seeking out knowledge on their own. Students eager to learn the skills they need to be successful in their chosen career path.

Science Task Cards

Science Task Cards

Tasks cards are a wonderful stepping stone for middle school students to develop their independent learning skills – providing them with a framework to focus their search and just enough guidance to ensure success. Task cards are also a fantastic way to reinforce lessons, review difficult concepts, or provide extra practice for the struggling student.

Task cards are a great tool that any teacher can implement into their home or classroom. They are a full-proof method for getting every student involved in learning regardless of their ability level.

Task cards are generally open-ended and inquiry based questions that make for a great learning tool and help to create an engaging learning environment. The student reads each card, performs the task, and records his/her answer on an answer sheet, on notebook paper, or in their lab notebook. Students may be asked to create a Venn Diagram to compare and contrast, draw an illustration and label important parts, write a letter to a famous person, research a current event, or even take a stance on a controversial topic.

How & When Should I Use Task Cards?

1.  Stations or Centers – Use task cards as station or center activities through with students rotate. I have found it works best to allow students to move at their own pace and visit as many or as few stations as possible. They can even move through the centers with a partner if assistance is needed. This is a great way to engage students because they can move around, work at their own pace, and feel successful!

What is Science Notebooking @EvaVarga.net2. Homework Assignments –  Whether you offer each student the same task card or mix it up and provide them with different task cards of their choosing, task cards work well for  homework. It’s a great way to build excitement for a new unit. Whether you ask students to complete the assignment in their interactive science notebook or on a separate piece of paper to turn in the following day, task cards are fun. Here’s an example of a life science task card:

Life Science: Animals
Scientific Classification

  • Research & Define: vertebrates and invertebrates
  • List three vertebrates and three invertebrates
  • Make a poster of the following: mammal, reptile, amphibian, birds, fish
  • Include a caption for each and summarize each class

3. Assessments – Task cards can be used as a quick assessment of student understanding in the midst of a lesson. Many task card questions can be also used as a more in-depth research paper or project. Alternatively, task cards can be used as a way to review for a test – either individually, in small groups, or as a whole class review game.

4. Engaging Warm-up Activities – I love to use task cards in our STEM Club as an activity to get focused and settled as we wait for the other students to arrive. They may find the assignment on the white board or taped down to the table. They work alone or in pairs to answer the question and we discuss their answers when I’m ready to begin.

typesrocks5. Enrichment Activities – Task cards can be kept handy (perhaps in a basket) for early finishers. After students have completed a project, test, or independent assignment, they can enrich their understanding of the material by selecting a task card of their own choice.

Where Can I Buy Task Cards?

Rosalind Franklin: The Unsung Hero of DNA Structure

Rosalind Franklin, a scientist whose role in the discovery of DNA structure in 1953 has been forgotten by many, has a chance to be immortalized in a feature film. Throughout her career she faced sexism at nearly every turn. She also happened to be Jewish, which heightened the prejudice against her. Her name may soon be on the tips of everyone’s tongue and her role in the discovery of DNA Structure known to all. Entertainment One has acquired the script to Exposure, her life story.

In 1962 James Watson, Francis Crick, and Maurice Wilkins jointly received the Nobel Prize in physiology or medicine for their 1953 determination of the structure of deoxyribonucleic acid (DNA). Rosalind Franklin (1920–1958), a colleague of Wilkins, died of cancer at the age of 37, and was thereby not equally honored because the Nobel Prize can only be shared by three scientists. It was her work in X-ray crystallography, however, that proved critical to the correct solution to DNA structure.

Unsung Hero of DNA Structure @EvaVarga.netWhat is DNA?  

DNA is the material embedded in the cells of all living organisms that carries the genetic coding that determines how a living thing will look and function. It is found in the nucleus of each cell and is unique to every individual – whether human, mountain lion, or butterfly. Its full name is deoxyribonucleic acid, which can be complicated to say, so we usually refer to it as DNA for short.

DNA is so tiny that it can not be seen unless we use a very powerful microscope. If we could see it we would see that it looks like a twisted ladder, which scientist refer to as the double helix. Each rung or step on the DNA ladder is composed of two letters.

There are only 4 letters — A,T,G, and C — and each has a unique puzzle-like shape. This means that A and T fit together to form a rung on the ladder and G and C fit together to form another rung on the ladder.

As we read the DNA ladder, the letters combine to form 3-letter words called codons. Then, these codons combine to form sentences that we call genes. These genes are the basis for your chromosomes, which give your body a blueprint or set of instructions for life.

Every human has 23 pairs of these DNA chromosomes that determine what we look like and how to perform. We get one set of chromosomes from our mother and one set from our father. Our chromosomes determine whether our eyes will be blue or brown, what color our skin and hair will be, whether we will be a boy or girl and so much more.

The Structure of DNA @EvaVarga.net

Building a Cardboard Safari DNA Double Helix Puzzle

Discovering DNA Structure

Inspired by Linus Pauling’s success in working with molecular models, James Watson and Francis Crick rapidly put together several models of DNA and attempted to incorporate all the evidence they could gather. Franklin’s excellent X-ray photographs, to which they had gained access without her permission, were critical to the correct solution. Along with Wilkins, Franklin’s partner, the four scientists announced the structure of DNA in articles that appeared together in the same issue of Nature.

After the publication, they moved on to different projects. Franklin went to Birkbeck College, London. Before her untimely death from cancer, she made important contributions to the X-ray crystallographic analysis of the structure of the tobacco mosaic virus, a landmark in the field. By the end of her life, she had become friends with Francis Crick and his wife and had moved her laboratory to Cambridge, where she undertook work on the poliovirus.

Biography

Rosalind Franklin @EvaVarga.netRosalind Franklin was born July 25, 1920 to a Jewish family in London, England. Educated at private schools in London, she studied natural sciences at Newnham College, Cambridge, from where she graduated in 1941. She joined the University of Cambridge where she earned a research fellowship in a physical chemistry laboratory under Ronald George Wreyford Norrish. The British Coal Utilisation Research Association offered her a research position in 1942, and started her work on coals. This helped her earn a PhD in 1945.

In 1947, she went to Paris as a chercheur (post-doctoral researcher) under Jacques Mering at the Laboratoire Central des Services Chimiques de l’Etat, where she became an accomplished X-ray crystallographer. She returned to London in 1951 and became a research associate at King’s College. She was compelled to move to Birkbeck College after two years, however, owing to disagreeable clashes with her director and more so with her colleague Maurice Wilkins. At Birkbeck, J. D. Bernal, chair of the physics department, offered her a separate research team. She died on April 16, 1958 at the age of 37 of ovarian cancer.

Bring it Home

Build a model of the DNA Double Helix with the Cardboard Safari Puzzle

Create a model of DNA with colorful Wiki-Sticks

Extract DNA from Strawberries in this great lab from Marci at the Homeschool Scientist

Explore the DNA Teaching Resources from Karyn at Teach Beside Me

Challenge your students with this Transcription / Translation Lab Activity 

Download the DNA & RNA Protein Synthesis Interactive Notebook Resources from Science with Amy

Make these cool DNA Sequence Bracelets

Watch this fabulous NOVA documentary on PBS, The Secret of Photo 51

Science Milestones