Science with Harry Potter: Potions (Chemistry)

Potions have always been essential in magic. Stories of witches tell of brewing magical drinks that turn men into mindless animals, restore youth, and make the drinker invisible. Other potions caused false emotion to be created such as when Ron Weasley declares his Love Potion-induced feelings for Romilda Vane.

I don’t expect many of you to appreciate the subtle science and exact art that is potion-making… I can teach you how to bewitch the mind and ensnare the senses. I can tell you how to bottle fame, brew glory, and even put a stopper in death.” ~ Professor Severus Snape

First year students will learn many skills that will be important for potion making. Advanced students will apply these skills to the development of a Marauder’s map and wizard wands.

Science with Harry Potter: Potions @EvaVarga.netA wizard or witch who specializes in potion brewing is known as a potioneer or a potions master.

In this course, students are expected to keep a journal to record what has been done (including ingredients, procedures, spells, chants, etc) and reflect upon what was learned.

Print a periodic table of the elements and put it into your notebook. On the facing page sketch out elements 1-10, use color-coding for protons, neutrons, and electrons.

Potions

Knowledge of potions and charms is a powerful weapon against dark forces. Learn about ions, ionic and covalent bonds, and compounds. Write the definitions in your notebook.

Prepare each of the potions described below and record your observations. Illustrate as desired.

Potion 1: Goblin Slobber

Goblin slobber is a potion which is particularly effective against being followed through woods and caves. Just drip some goblin slobber on the path behind you and anything that is chasing you will be driven away.

  • One flask of water
  • ¼ measure instant goblin slobber(dehydrated)
  • 1 full measure Manticore milk
  • 1 full measure water
  • 3 drops goblin blood

Cauldron (mixing bowl will do if you have not yet received your cauldron)

1. Rehydrate the goblin slobber:Pour the instant goblin slobber into the flask of water. Stir briskly with wand to dissolve while chanting “soluloso aqualitem.” Repeat until fully dissolved.

2. Into the manticore milk pour the measure of water and the goblin blood and stir, repeating incantation.

3. The final step is to pour the two solutions into the cauldron and stir well chanting “goblinatum sloberosum.” You may need to adjust the quantities, so add them slowly.

Muggles will know these ingredients as: Instant goblin slobber= Borax. Manticore milk= Elmer’s glue. Goblin blood= green food coloring. flask=quart, measure=cup

Potion 2: Muggle Paper

This bright yellow potion gives you the ability to detect whether someone is muggle or magic.

  • 1 vial nettle nectar
  • 1/4 vial (approx) ground dragon scale
  • filter paper
  • Veritaserum

1. Put your filter paper into the cauldron.

2. Dissolve the ground dragon scale into the nettle nectar, shaking well to dissolve.

3. Pour over top of paper, allowing it to soak in well.

4. Remove paper from cauldron and hang to dry. Dust off any left over dragon scale.

5. Once paper is dry, dip right hand into Veritaserum (pour it into a bowl) and place directly onto paper with a slap.

6. Your true bloodline will be revealed!

Muggles will know these ingredients as: Nettle nectar= rubbing alcohol, ground dragon scale= turmeric, and veritaserum= baking soda and water solution.

Potion 3: Instant Ocean

This potion is very useful for creating a peaceful seaside vacation atmosphere in a small space. If made properly you can see the tiny waves and sea-foam inside the flask. This potion should be done in a place where messes are not a problem in case of sloppy magic by first year students. A calming charm may be needed in case of storms at sea.

  • Narrow-necked flask
  • 2 vials Midsummer Dewdrops
  • 1/2 dribble Kraken slime
  • 3-4 drops of Squeaking-Squid ink
  • 1 teaspoon Pulverized Narwhal Horn dissolved in ~2 tablespoons very warm water
  • Funnel
  • Large Cauldron

1. Stand flask in cauldron with funnel in top

2. Add 3-4 drops of squid ink to the Midsummer dew, shake well to mix

3. pour through the funnel into the flask

4. Add the Kraken slime to the mixture in the flask.

5. Pour the narwhal horn mixture into the bottle and remove the funnel.

Muggles will know these ingredients by their common names: hydrogen peroxide, dawn detergent (preferably green), blue food coloring, and yeast.

Marauder’s Map

In the film Harry Potter and the Prisoner of Azkaban, what first appears to be a blank piece of parchment becomes a magical Marauder’s Map. In this lesson, students create their own invisible inks, they learn what acids, bases and indicators are and how they can be used.

Begin by drawing a pH scale in your notebook. Use your “muggle” paper (created with Potion 2) to test a variety of substances around the house (vinegar, wine, lemon juice, baking soda, cola, bleach, ammonia, milk, etc). Make a table in your notebook showing your results. If you have litmus papers you can use them as well.

With your knowledge of acids and bases, create a map of your own using an ink you have devised.

Wizard Wands

Wands have been mentioned throughout time. Popular fantasy stories from a variety of origins have featured characters using wands. It could thereby be reasoned that Ollivander’s (makers of fine wands since 382 B.C.) had provided them.

To begin, learn about molecules and sketch several in your notebook (water, carbon dioxide, methane, glucose, etc.) Consider making models with gum drops or balls of clay and toothpicks.

There will be no foolish wand-waving or silly incantations in this class. ” ~ Professor Snape on Potions class

Explosive Enterprises is a line of fireworks sold at Weasleys’ Wizard Wheezes. This group of fireworks included the original Weasleys’ Wildfire Whiz-Bangs as well as a variety of new and creative pyrotechnic products created by Fred Weasley and his twin brother George.

This post is part of a five-day hopscotch. Join me each day this week as we dive into each course.

Herbology (Botany)

Care of Magical Creatures (Zoology)

Potions (Chemistry) – this post

Alchemy & Divination (Geology)

Magical Motion (Physics)

Science with Harry Potter: Care of Magical Creatures (Zoology)

Care of Magical Creatures is an elective at Hogwarts, available to upper classmen. Throughout the course, students learn about a wide range of magical creatures and are taught about the care and husbandry.

Similar to herbology, the further into a student’s education the more difficult and dangerous the creatures become. The witches and wizards who succeed in the subject later become Magizoologists, like Newt Scamander.

Magical CreaturesFor this class students are required to become familiar with the many magical creatures you may encounter both at Hogwarts and in the outside world. Students should begin with the following:

  • Owl
  • Hippogriff
  • Phoenix
  • Unicorn
  • Werewolf
  • Centaur
  • Basilisk
  • Elf

C’mon, now, get a move on! Got a real treat for yeh today! Great lesson comon’ up! Everyone here? Right, follow me!” ~ Rubeus Hagrid at his first Care of Magical Creatures lesson

Students are required to keep a field notebook in which a two-page spread is created for each magical creature studied. For each magical creature you study:

  1. Make a sketch of the creature, labeling important features
  2. List any historical or literary references to the creature
  3. Describe its natural habitat
  4. Discuss its habits, temperament, and relationship to humans
  5. List its magical properties
  6. Explain the care and feeding of the creature

Advanced students may choose additional magical creatures to study. Take care to choose wisely, as your knowledge of magical creatures could one day prevent a terrible injury or death.

Magical Properties of Dragons

You’ve likely already discovered the magical property of dragon scales while researching and preparing your field notes above. Now you will learn about the properties of dragon skin and dragon down (the fluffy feathers from underneath the wing).

Young wizards and witches should have adult supervision as all parts of a dragon are highly flammable. A fire-proof cauldron is advised.

Dragon Skin: take thin slices of dragon skin and hold them next to an open flame. Bend the skin, squeezing until it bursts. You should see tiny sparks fly as the fire-breathing properties are released. This should be done very close to the flame.

Dragon Down: Put a small quantity of dragon down into a cauldron. Touch the end of a 9 volt battery lightly to the down to release the fire-breathing properties.

(Note to professors: muggles will know these items as orange peel and steel wool.)

Genetics

Students watch a video clip from Harry Potter and the Goblet of Fire to learn about genetic traits. Specifically, they realize that the ability to speak parseltongue (being able to speak to snakes) is a genetic trait possessed by some characters and their parents. Students explore the use of Punnett squares to predict trait inheritance, learning about genotypes and phenotypes.

This post is part of a five-day hopscotch. Join me each day this week as we dive into each course.

Herbology (Botany)

Care of Magical Creatures (Zoology) – this post

Potions (Chemistry)

Alchemy & Divination (Geology)

Magical Motion (Physics)

Science with Harry Potter: Herbology – The study of plants and fungi (Botany)

Herbology is the study of magical and mundane plants and fungi. It is a core class and subject taught at Hogwarts School of Witchcraft and Wizardry for the first five years of a student’s education.

herbology

Herbology

Throughout each term, students learn to care for plants as well as learn about their magical properties and how they may be used medicinally. The further into a student’s education the more difficult and dangerous the plants become.

“Three times a week they went out to the greenhouses behind the castle to study Herbology, with a dumpy little witch called Professor Sprout, where they learned how to take care of strange plants and fungi, and found out what they were used for.” ~ Harry Potter and the Sorcerer’s Stone

All first year students are required to familiarize themselves with the herbs listed below.

  • Chamomile
  • Tarragon
  • Yarrow
  • Caraway
  • Horseradish
  • Dill
  • Aloe Vera
  • Silver Birch
  • Garlic
  • Tumeric

herbologyAs students work through their self-guided journey, they are required to keep a field notebook in which a two-page spread is created for each plant or fungi studied. Each spread is required to include the following information:

  1. Give common name as well as Latin names (genus and species) and family
  2. Press a specimen of the plant (if possible)
  3. Make a sketch of the plant, colored appropriately
  4. Label key parts of the plant, pointing out important features
  5. Explain its cultivation and care
  6. Give a brief natural history of the plant (describe growth cycle, natural range, etc.)
  7. List its household and medicinal uses both presently and historically
  8. Describe its magical properties (if any)

Take it Further

Enjoy a cup of Chamomile tea before bedtime or a glass of birch beer with your noonday meal.

Explore the many wildcrafting and herbal remedies described at Learning Herbs.

Enjoy the fun board game, Wildcraft: An Herbal Adventure.

Research the native plants in your local area and learn how native peoples used them for food and medicine.

Visit a native elder, if possible, and learn to how to harvest and prepare these plants for personal use.

As you advance in your studies, be sure to add each new plant to your journal.

This post is part of a five-day hopscotch. Join me each day this week as we dive into each course.

Herbology (Botany) – this post

Care of Magical Creatures (Zoology)

Potions (Chemistry)

Alchemy & Divination (Geology)

Magical Motion (Physics)

Science Milestones: The Heroine of Lyme Regis, Mary Anning

In my Facebook newsfeed recently, a memory popped up highlighting a field trip we took part in years ago when we first began our homeschool journey. Our visit to Paleo Lands Institute in Eastern Oregon is one of our fondest homeschool experiences. When we visit the Field Museum in Chicago last week, we reflected on this trip as we marveled at the many specimens they had on display – the most impressive, of course, was SUE (pictured below).

The unveiling of her 67-million-year-old skeleton at The Field Museum made global headlines in May of 2000. As the largest, best-preserved, and most complete Tyrannosaurus rex ever found, she is considered to be the most famous fossil ever found. She measures 40.5 feet long from snout to tail and 13 feet tall at the hip.

Interesting fact: While SUE is frequently referred to as a “she,” scientists don’t actually know her sex.

Virtually all parts of SUE’s skeleton are preserved in great detail—even the surface of her bones. Scientists can actually see where muscles, tendons, and ligaments once attached. Not only are most of the bones undistorted from fossilization, but cross-sections of the bones show that even the cellular structure inside remains intact.

w/ Sue at the Field Museum, Chicago

If SUE is the most famous fossil, who then is regarded as the most renowned fossilist the world ever knew?  The answer is Mary Anning.

Despite the fact that Mary Anning’s life has been made the subject of several books and articles, comparatively little is known about her life, and many people were unaware of her contributions to paleontology in its early days as a scientific discipline. How can this be, you ask?

Biography

Mary Anning by B. J. DonneMary Anning was born on the 21st of May 1799 to Richard and Mary Anning in Lyme Regis, Southwest England. Mary grew up in a prime location to lead a life of fossil collecting. The marine fossil beds in the cliffs in this area remain today a huge source of fossils from the Jurassic period.

Her findings contributed to important changes in scientific thinking about prehistoric life and the history of the Earth. At the age of 12, Mary Anning was to become one of the most famous popular palaeontologists, with her discovery of a complete Icthyosaur.

Interesting fact: Though she is now credited with the discovery, her brother had first found the specimen. Mary did find the majority of the remains and contribute significantly to the excavation work. Mary went on to find two more species of Ichtyosaur in her life.

In early 1821, Anning made her next big discovery with the finding of the first Plesiosaurus. She sent a drawing she made to the renowned George Curvier, who at first snubbed it as a fake. Upon further examination, he eventually reversed this statement finally giving Anning the respect she had deserved from the scientific community. This discovery is perhaps her most important find, from a scientific point of view.
Autograph letter concerning the discovery Wellcome L0022370
The majority of Mary’s finds ended up in museums and personal collections without credit being given to her as the discoverer of the fossils. There are many factors contributing to this error: the lack of appropriate documentation of her special skills, her social status, and more importantly, her gender. Many scientists of the day could not believe that a young woman from such a deprived background could posses the knowledge and skills that she seemed to display.

For example, in 1824, Lady Harriet Sivester, the widow of the former Recorder of the City of London, wrote in her diary after visiting Mary Anning:

“. . . the extraordinary thing in this young woman is that she has made herself so thoroughly acquainted with the science that the moment she finds any bones she knows to what tribe they belong. She fixes the bones on a frame with cement and then makes drawings and has them engraved. . . It is certainly a wonderful instance of divine favour – that this poor, ignorant girl should be so blessed, for by reading and application she has arrived to that degree of knowledge as to be in the habit of writing and talking with professors and other clever men on the subject, and they all acknowledge that she understands more of the science than anyone else in this kingdom.”

After her death on the 9th of March 1847, her unusual life story attracted the attention of scholars around the world. Her story was the inspiration for the 1908 tongue-twister “She sells seashells on the seashore” by Terry Sullivan and in 2010, one hundred and sixty-three years after her death, the Royal Society included Anning in a list of the ten British women who have most influenced the history of science.

Bring it Home

➤ For younger students, explore the fun games and activities at BBC’s Primary History Famous People: Mary Anning.

➤ Read the article, “Mary Anning: The Fossilist as Exegete” by Thomas W. Goodhue in Endeavour Magazine, March 2005 issue

➤ Build upon your child’s interest in fossils and geology in an in-depth Earth sciences curriculum study.

Geology Rocks➤ Visit a local geology club in your area and inquire about getting started in collecting.

➤ Discover Ice Age Fossils at La Brea Tar Pits in Los Angeles

 

Science MilestonesVisit my Science Milestones page to learn more about scientists whose discoveries and advancements have made a significant difference in our lives or who have advanced our understanding of the world around us.

Interested in learning about others who were born in the month of January? Hop over to Birthday Lessons in March to read posts by other iHomeschool Network bloggers.

More Than Just the Telephone: The Impact of Alexander Graham Bell

Unbeknownst to many, Alexander Graham Bell made outstanding contributions to aviation through his development of tetrahedral kites, the investigation of their application to personnel carrying aircraft, and his enlistment of talented associates who aided significantly in the progress toward accomplishing powered flight.

Expanding upon the design of the rectangular-celled box kite that Hargrave of Australia invented, Dr. Bell developed a three-sided triangular form of cell which he adapted to various multi-cellular shapes. This research led to a large kite in which on December 6th, 1907, his associate, Lt. Thomas Selfridge, flew to a height of over 160 feet.

Science Milestones: Alexander Graham Bell @EvaVarga.netAlthough his greatest scientific accomplishment was the invention of the telephone, Dr. Bell deserves wide recognition for his promotion of aeronautics. He was a member the Aerial Experiment Association that formed in 1907 who conducted flight experiments from his summer home at Baddeck, Nova Scotia.

“I have no doubt that a machine will be driven from the Earth’s surface at enormous velocities by a new method of propulsion – think of tremendous energies locked up in explosives – what if we could utilize these in projectile flight!” ~ Alexander Graham Bell

Believing that the substitution of an engine and propeller attached to the kite might permit free man-carrying flight, dispensing with the tethering line, Dr. Bell and Lt. Selfridge secured the services of Glenn H. Curtiss. Curtiss helped them to construct a proper engine, and they also engaged the assistance of J. A. D. McCurdy and F. W. Baldwin. These five men formed the Aerial Experiment Association for the stated purpose of “getting into the air” – which also put them in direct competition with the Wright brothers.

Biography

Science Milestones: Alexander Graham Bell @EvaVarga.netAlexander Graham Bell was born on March 3, 1847 in Edinburgh, Scotland. His mother was the daughter of a Royal Navy surgeon and was a skilled musician and portrait painter whose hearing loss when Bell was just twelve years old, brought deafness close to him.

Bell’s father, Alexander Melville, was the world world-famous inventor of “Visible Speech”, a code of symbols to guide the action of the throat, tongue and lips in the shaping of various sounds. It was devised as a key to the pronunciation of the words in all languages, but had become of most use in teaching the deaf to speak. His grandfather, Alexander, was a specialist in the correction of speech defects as well as a renowned public speaker, giving public readings from Shakespeare’s plays on London’s stages.

“Don’t keep forever on the public road, going only where others have gone. Leave the beaten track occasionally and dive into the woods.” ~ Alexander Graham Bell

Bell had natural musical ability and turned toward a career as a pianist. By the time he was 25, he was assisting his father at Weston House, a boys’ school near Edinburgh, and trading music and elocution lessons for instruction in other subjects. He continued his formal education at the University of Edinburgh and later specialized in the anatomy of the vocal apparatus at University College in London. At 22, with his formal education behind him, he became a partner with his father.

He moved with family to Ontario in 1870 and a year later Sarah Fuller, the principal of a school for the deaf in Boston, asked him to teach her teachers. His success lead to a professor appointment at Boston University.

Bell’s patent for his telephone was filed just two hours before another experimenter, Elisha Gray, filed his claim in the U.S. Patent Office.

While in Boston, Bell met the two men who financed his pioneer work with the telephone. Thereafter, Bell spent the latter part of his life in Washington, D.C. and his summer home in Nova Scotia. He became a United State citizen in 1882.

He died on August 2, 1922 at which time 14,347,000 telephone were in operation across the country.

Bring it Home

➤ Research and discuss the invention of the telephone, its origin, its innovations, its advantages and disadvantages, and how it has shaped today’s society.

➤ Watch a video about Alexander Graham Bell.

➤ Create a poster to illustrate the changes the telephone has undergone since Bell’s original invention.

Build a tetrahedral kite of your own. Test the flight and refine your design to make improvements.

➤ Research his contemporaries (Glenn Curtiss, the Wright brothers, Thomas Edison, etc.) and put together a presentation (PowerPoint, brochure, poster, video, etc.) to share with others their impact on technology.

➤ Although Bell is best known for inventing the telephone, he invented many other things. He held patents for 18 other inventions on his own and 12 for which he collaborated with others. Learn more about each of these.

Science Milestones

Visit my Science Milestones page to learn more about scientists whose discoveries and advancements have made a significant difference in our lives or who have advanced our understanding of the world around us.

Interested in learning about others who were born in the month of January? Hop over to Birthday Lessons in March to read posts by other iHomeschool Network bloggers.

Science Milestones: A New Astronomy with Johannes Kepler

Each month, I like to share a post celebrating the accomplishments of a scientist whose discoveries and advancements have made a significant difference in our lives. To honor the work of these amazing people, I provide a little peak into their life and share an unschool-style learning guides or unit study to guide you and your children on a path of discovery.

This month, I chose to honor the Johannes Kepler, who lived in an era when there was no clear distinction between astronomy and astrology. There was, however, a strong division between astronomy (a branch of mathematics within the liberal arts) and physics (a branch of natural philosophy).

Science Milestones: A New Astronomy with Johannes Kepler @EvaVarga.netJohannes Kepler

In 1596, the German astronomer published his first important work on astronomy, Mysterium Cosmographicum (The Cosmographic Mystery). As well as defending the heliocentric model of the universe previously proposed by Copernicus in 1543.

Kepler explained the orbits of the known planets around the Sun in geometric terms in an attempt to unravel “God’s mysterious plan of the universe.” To do this, he dow upon the classical notion of the “harmony of the spheres” which he linked to the five Platonic solids – octahedron, icosahedron, dodecahedron, tetrahedron, and cube.

Science Milestones: A New Astronomy with Johannes Kepler @EvaVarga.net

The Platonic solids, when inscribed in spheres and nested inside one another in order, correspond to the orbits of the planets Mercury, Venus, Earth, Mars, Jupiter, and Saturn.

In 1619, he published Harmonices Mundi (The Harmony of the World) wherein he stated his third law of planetary motion. He described the relationship between a planet’s distance from the Sun and the time taken to orbit around it as well as the speed of the planet at any time in that orbit.

Biography

Science Milestones: Johannes KeplerKepler was born in the small town of Weil der Stadt in the Swabia region of Germany and moved to nearby Leonberg with his parents in 1576. His father was a mercenary soldier and his mother, the daughter of an innkeeper. Johannes was their first child.

When Johannes was just five, his father left home for the last time and is believed to have died in the war in the Netherlands. As a child, Kepler lived with his mother in his grandfather’s inn. He tells us that he used to help by serving in the inn.

Kepler’s early education was in a local school and then at a nearby seminary. Intending to be ordained he went on to enroll at the University of Tübingen, a bastion of Lutheran orthodoxy.

Throughout his life, Kepler was a profoundly religious man. All his writings contain numerous references to God, and he saw his work as a fulfilment of his Christian duty to understand the works of God.

At Tübingen Kepler was taught astronomy by one of the leading astronomers of the day, Michael Mästlin. The curriculum was of course, geocentric astronomy, in which all seven planets – Moon, Mercury, Venus, Sun, Mars, Jupiter and Saturn – moved around the Earth, their positions against the fixed stars being calculated by combining circular motions.

This system was more or less in accord with current Aristotelian notions of physics, though there were certain difficulties. However, it seems that on the whole astronomers were content to carry on calculating positions of planets and leave it to natural philosophers to worry about whether the mathematical models corresponded to physical mechanisms. Kepler did not take this attitude. His earliest published work, Mysterium Cosmographicum, proposed to consider the actual paths of the planets, not the circles used to construct them.

 “I am satisfied…to guard the gates of the temple in which Copernicus makes sacrifices at the high altar.” ~ Johannes Kepler

Kepler was one of the few pupils to whom Mästlin chose to teach more advanced astronomy by introducing them to the new, heliocentric cosmological system of Copernicus. Kepler seems to have accepted almost instantly that the Copernican system was physically true.

Soon after moving to Regensburg in 1630, he became seriously ill with fever and on November 15 he died.

Bring it Home

What are Kepler’s three laws of planetary motion? How were his ideas viewed by his contemporaries?

Learn more about star polyhedra, discovered by Kepler in 1619 and prominently featured in the architecture of European churches.

Build models of the five Platonic solids; consider The Finnish Craft of Himmeli or Paper Models of Polyhedra.

Research the epitaph inscribed on his gravestone (sadly swept away in the Thirty Years War):

I used to measure the heavens,
now I shall measure the shadows of the earth.
Although my soul was from heaven,
the shadow of my body lies here.

 

Science Milestones

Visit my Science Milestones page to learn more about scientists whose discoveries and advancements have made a significant difference in our lives or who have advanced our understanding of the world around us.

Interested in learning about others who were born in the month of January? Hop over to Birthday Lessons in December to read posts by other iHomeschool Network bloggers.