Rare, Bizarre Creatures from the Deep: An Unexpected Nature Study

I grew up on the Oregon Coast in beautiful Bandon by the Sea. I spent many a day on the shoreline investigating the marine invertebrates under the rock crevices and walking the sandy beaches. My brothers and I longed for the minus tides, providing us the rare opportunity to go spelunking in the sea caves just off shore. These rocky islands are now protected areas for marine bird nesting habitat but back in the 70s, it was our playground.

dune geology tunicates

Dune geology features: foredune and deflation plain

Tracking Marine Debris

In all the years I have spent on the beach, I have found a diverse amount of debris and organisms in varying states of decay. I probably spend an equal amount of time sifting through the wrack on the high tide line as I do in wave zone digging in the sand looking for mole crabs.

I have found marine debris from Japan evidenced by the kanji script. An occasional flip flop or fishing net remnants are not uncommon. While immersing myself in marine biology courses at the Oregon Institute of Marine Biology one summer, I even found several squid egg cases that washed ashore after a winter storm, providing my peers and I an opportunity to observe the development up close. Yet, once in a while, I am still surprised at what washes ashore.

tunicates

Walking along the ATV trail across the deflation plain

This past holiday weekend, my family and I enjoyed a leisurely walk on the beach near our home. Our goal was to field test a new marine debris app, a joint initiative between the NOAA Marine Debris Program and the Southeast Atlantic Marine Debris Initiative. The tracker app allows you to help make a difference by checking in when you find trash on our coastlines and waterways.*

We drove out to the North Spit and thereafter began our excursion through the deflation plain. We soon discovered, however, that there was too much standing water to stick to the trail that meandered through the wetland area. We thus walked along the ATV road until we reached the small foredune. Just a few feet up and over and we arrived on the sandy beach.

No sooner did we arrive at the shore and we immediately were captivated by the presence of a strange organic material that was strewn across the beach for miles. Upon first glance, it looked like a hard plastic tube resembling a sea cucumber. My first suspicion turned out to be incorrect, however. Upon returning home, I learned that what we had found were actually colonial tunicates. Fascinating!

tunicates rare creatures

Planktonic salps, Pyrosoma atlanticum, strewn across the beach.

What are Tunicates?

This bizarre and rarely-seen creature is called a pyrosome, a species of pelagic colonial tunicates. Their scientific name, Pyrosoma atlanticum, is derived from the Greek words pyro meaning ‘fire’ and soma meaning ‘body’ which refers to the fact that they are known for bright displays of bioluminescence.

Pyrosoma atlanticum are one of the few pyrosomes that make it to the west coast of the U.S. The species found here are less than a foot but can get as long as 24 inches. Largely colorless, they can show up as pink, grayish or purple-green.

tunicates invertebrates

A specimen of the colonial tunicate, Pyrosoma atlanticum 

These massive colonies of cloned creatures are related to a kind of jellyfish called a slap. A tunicate is a marine invertebrate animal, a member of the subphylum Tunicata, which is part of the Chordata, a phylum which includes all animals with dorsal nerve cords and notochords.

Each individual organism is about 1 cm long – less than a third of an inch. They are all connected by tissue and in turn form this colony that looks like a plastic tube. The recent winter storms have caused them to strand on the shores and have been found in all areas of the coast.

Usually found in temperate waters as low as 800 meters. The colony of animals is comprised of thousands of individual zooids and moves through the water column by the means of cilia (an organelle found in eukaryotic cells that project from the much larger cell body).

As they move through the water column, sometimes close to the surface and sometimes as far down as 2600 feet, they filter plankton out of the water for food. As it sucks water in, it then pushes it back out, thereby propelling it through the ocean. It does all this via one opening only, so it moves incredibly slow.

For more images of Pyrosoma, check out Bob Perry’s photographs. Included in his work are a few pseudoconchs (false shells) of the pelagic mollusk Corolla which we similarly found.zoologyIf you are interested in learning more about invertebrates with your students, I encourage you to look into the Amazing Animals curriculum unit I have written to introduce middle level students to zoology. This 10-week unit is full of inquiry-based activities and lesson plans fully outlined for you.

Due to our fascination with these rare creatures, we didn’t spend as much time with the debris tracking app as I had intended. We’ll give it a go another time.

Science on the Road: Visiting the Statue of Liberty & Chemical Reactions

In September, we spent a few days in New York City on the island of Manhattan, the city’s historical birthplace and the economic and center. The borough contains several smaller islands including Liberty Island, Ellis Island (shared with New Jersey), Governors Island, and a few others. We were really looking forward to exploring the area and learning more about the history of the area, specifically the Statue of Liberty.

Science of the Statue of Liberty @EvaVarga.netWe arrived in Manhattan via Amtrak train from Boston in the early afternoon. We thereby opted to take in the Statue of Liberty and Ellis Island the following day when we could arrive early and board the first cruise boat. This turned out to be a wise decision as the queue upon our return to the main island was very long.

We grabbed a quick bite at the deli just outside the Courtyard Marriott on 40th where we are staying then hopped the green line express to Bowling Green. Here, we walked the short distance to the boarding area.

We immediately made our way to the National Park Visitor Center after we disembarked. Here we stamped our Park Passport Books and inquired about guided tours. We were in luck in that the first tour would begin in just 20 minutes. We took a few candid photos (Geneva pulled out her sketch book) as we waited.

As we planned to spend all our time in this area, we opted to purchase the New York CityPASS as the majority of the attractions were in this general area. In addition to Statue of Liberty and Ellis Island cruise, the pass provided us with tickets to each of the following attractions:

  • Statue of Liberty & Ellis Island
  • The Empire State Building
  • American Museum of Natural History
  • The Metropolitan Museum of Art
  • Guggenheim Museum 
  • 9/11 Memorial & Museum   

 

Science & Art of Liberty Island and the Statue of Liberty @EvaVarga.netVisiting the Statue of Liberty & Liberty Island

Liberty Island Tour

The group that gathered for the guided tour of Liberty Island was small and thereby very intimate. I am surprised more people don’t take advantage of this opportunity – they are so very informative and best of all, FREE!

As we listened to the park ranger, we learned the idea of gifting the United States with a monument was first proposed in 1865 by Frenchman Edouard de Laboulaye. Sculptor Frederic Auguste Bartholdi was commissioned to design a sculpture ten years later, with a goal of completing the work in 1876 to commemorate the centennial of the American Declaration of Independence.

As a joint venture between the two nations, it was agreed that the American people were to build the pedestal (carved in granite, the pedestal was designed by architect Richard Morris Hunt in 1884), and the French people were responsible for the Statue and its assembly here in the United States.

In France, public fees, various forms of entertainment, and a lottery were among the methods used to raise funds for the project. In the United States, theatrical events, art exhibitions, auctions and prizefights assisted in financing the construction.

Poet Emma Lazarus wrote her famous sonnet “The New Colossus” in 1883 for the art and literary auction to raise funds for the Statue’s pedestal.

Not like the brazen giant of Greek fame,
With conquering limbs astride from land to land;
Here at our sea-washed, sunset gates shall stand
A mighty woman with a torch, whose flame
Is the imprisoned lightning, and her name
Mother of Exiles. From her beacon-hand
Glows world-wide welcome; her mild eyes command
The air-bridged harbor that twin cities frame.
“Keep, ancient lands, your storied pomp!” cries she
With silent lips. “Give me your tired, your poor,
Your huddled masses yearning to breathe free,
The wretched refuse of your teeming shore.
Send these, the homeless, tempest-tost to me,
I lift my lamp beside the golden door!”
 – Emma Lazarus

Science & History of the Statue of Liberty @EvaVarga.netCentennial Gift 10 Years Late

Financing for the pedestal was completed in August 1885, and pedestal construction was finished in April 1886. The Statue was completed in France in July 1884 and arrived in New York Harbor in June 1885 onboard the French frigate “Isere.”

In transit, the Statue was reduced to 350 individual pieces and packed in 214 crates. The Statue was reassembled on her new pedestal in four months’ time. On October 28, 1886, President Grover Cleveland oversaw the dedication of the Statue of Liberty in front of thousands of spectators.

Homage to the Statue of Liberty Supporters

On Liberty Island, there are several small sculptures commemorating several of the key supporters of the Statue of Liberty gift. I really enjoyed hearing the personal triumphs that made it all possible.

  • Edouard de Laboulaye ~ The “Father of the Statue of Liberty.” He provided the idea that would become the Statue.
  • Frederic Auguste Bartholdi ~ The French artist and sculptor who designed the Statue of Liberty Enlightening the World.
  • Alexandre-Gustave Eiffel ~ The architect and engineer who designed the Statue’s internal support.
  • Emma Lazarus ~ The poetess who wrote “The New Colossus” to help raise money for the pedestal’s construction.
  • Joseph Pulitzer ~ The newspaper publisher who helped raise the money needed to complete the pedestal’s construction.

One of the things I overheard many of the young visitors ask as we walked about the island was, “Why is it green?” I knew that when I returned home, this was a concept I wanted to revisit with my children.

Bring it Home ~ Oxidation Reduction Reactions

Why is the Statue of Liberty Blue-Green?

Begin by showing students photographs of the Statue of Liberty.  Ask students to describe the color. Students usually give the right answer: that it is blue or aquamarine (blue-green). Now ask them why it is this color. Students generally have no clue.

Explain that the color is due to the oxidation of copper. Next, show them a piece of rusted metal and point out that the red color of rust is caused by the oxidation of iron.

Science of Oxidation and the Statue of Liberty @EvaVarga.netOxidation Explained with Chemical Equations

Chemical reactions can be divided into two classes: redox (reduction-oxidation) reactions and non-redox reactions based on whether electron transfer process is involved or not. A redox reaction consists of two half reactions: a reductive half in which a reactant accepts electrons and an oxidative half in which a reactant donates electrons.

2Cu + O2 → Cu2O

The nature of a redox reaction is that one reactant donates its electrons to the other reagent. For example, in the oxidation of copper by oxygen, copper atoms donate electrons to an oxygen molecule so copper is oxidized while oxygen is reduced.

The Statue of Liberty gets its blue-green color from patina formed on its copper surface mainly through oxidation along with several other chemical reactions. The main constituent of patina contains a mixture of 3 compounds: Cu4SO4(OH)6 in green; Cu2CO3(OH)2 in green; and Cu3(CO3)2(OH)2 in blue. The following reactions are involved.

2Cu2O + O2 → 4CuO

Cu + S → 4CuS 

The oxidation starts with the formation of copper oxide (Cu2O), which is red or pink in color (equation 1), when copper atoms initially react with oxygen molecules in the air. Copper oxide is further oxidized to copper oxide (CuO), which is black in color (equation 2). In the 19th and early 20th century, coal was the major fuel source for American industry and it usually contains sulfur. Thus, the black copper sulfide (CuS) also forms (equation 3).

2CuO + CO2 + H2O → Cu2CO3(OH)2

3CuO + 2CO2 + H2O → Cu3(CO3)2(OH)2

4CuO + SO3 +3H2O → Cu4SO4(OH)6

Over the years, CuO and CuS slowly reacts with carbon dioxide (CO2) and hydroxide ions (OH-) in water from the air to eventually form Cu2CO3(OH)2 (equation 4) , Cu3(CO3)2(OH)2 (equation 5) and Cu4SO4(OH)6 (equation 6), which constitute the patina. The extent of humidity and the level of sulfur-related air pollution have a significant impact on how fast the patina develops, as well as the relative ratio of the three components.

Take it Further

Can you think of another oxidation reduction reaction? Write out the chemical equations to further describe this process.

 

How to Build a Connection with Nature in Your Homeschool

Nature study has always been a major focus in our homeschool. In fact, throughout their primary and early elementary years, nature study was primarily the only science we covered.

While easily accessible, nature study incorporates so much more than just the study of plants and animals in our backyard. It can include the study of weather and climate patterns, even ocean currents and tides.

To help you kick off the new school year with gusto, I am giving away a basket load of wonderful nature study goodies that I know you and your kids will absolutely love.

How We Approach Nature Study

I try to incorporate a nature lesson each week. This begins with spending quality time outdoors. With a tween and teen, this basically means we go for hikes or evening walks as a family. When they were younger, however, it meant playing in the creek near the lake, building imaginary worlds in the backyard, and even climbing trees.

Foraging for Mushrooms: A Wild Edibles Nature Study @EvaVarga.net

Disclosure: This post contains affiliate links. Your purchase at these retailers helps to support my family.

Read my post Keeping a Nature Journal to learn how to get started in just 5 simple exercises. I’ve written more extensively about How We Approach Nature Study but how it is done is less important than just getting outside and exploring the world. Here are a few of our lessons from the past:

Here are some Summer Nature Activities to get you started before school begins next month.

nature journaling

If you would like to take it a little further or if you have an older child, consider learning about a master naturalist like Anna Botsford Comstock, Jane Goodall, or Carolus Linneaus.

For classroom or home educators, I also teach an extensive class on Nature Journaling in the Classroom if you’d like more guidance or are interested in earning course credit.

Nature BasketNature Study Giveaway

As promised, this basket of goodies is sure to delight you and your kids. I have included several of our favorite field identification books, a practical guide to discovering the natural world, and an outdoor workbook for families and classrooms. The contents of the basket are worth over $90!   

The Nature Connection by Claire Walker Leslie ($15.95)

The Practical Naturalist from DK Publishing ($22.95)

National Audubon Society Pocket Guide: Familiar Birds of Sea and Shore ($9.00)

National Audubon Society Pocket Guide: Familiar Birds of Lakes and Rivers ($9.00)

Tree Finder: A Manual for Identification of Trees by Their Leaves by May Theilgaard Watts ($5.95)

Rocky Mountain Tree Finder by Tom Watts ($5.95)

Millie & Cyndi’s Pocket Nature Guides:

Painted Ladies of North America ($7.95)
Hummers: Hummingbirds of North America($7.95)
Talons: North American Birds of Prey($7.95)

 

Bonus: NaturExplorers Incredible Creeks eBook ($8.95) … to be sent separately

Enter to Win This Bundle

a Rafflecopter giveaway

Back to Homeschool Gift Baskets

But Wait! That is not all ~ 52 homeschool bloggers have joined together to provide one massive back-to-homeschool basket giveaway! Take a peek around these 52 sites and enter to win as many baskets as you like.

Gift Baskets 2016 CollageEach blogger is conducting her own giveaway, so you never know. You may end up winning more than one! All giveaways will be live on Monday, August 15.

Sea Slugs, Snails, and Sea Hares, Oh My!

I love slugs! They are one of my favorite animals, particularly if limiting the scope of the question to invertebrates. In my opinion, they are one of the most beautiful and fascinating organisms.

You’re likely thinking I have lost my mind. “You really think this guy is beautiful?” 

Sea Slugs, Snails, and Sea Hares

Pictured here is the banana slug

Yes, I do. Well, actually, in my mind I was picturing his close relative the sea slug or nudibranch. This summer, I have been volunteering at the new Marine Life Center at the Oregon Institute of Marine Biology and I’ve thereby had the opportunity to learn so much about these fascinating animals. Let me introduce you to the gastropods.

Class Gastropoda 

The Gastropoda or gastropods class, more commonly known as snails and slugs, are a large taxonomic class within the phylum Mollusca. A very diverse group with 60,000 to 80,000 living species (second only to insects in number of species) that includes snails and slugs of all kinds and all sizes from microscopic to large. There are many thousands of species of sea snails and sea slugs, as well as freshwater snails, freshwater limpets, land snails and land slugs.

Sea Slugs, Snails, and Sea Hares @EvaVarga.net

How many sea slugs can you find in this picture?

The anatomy, behavior, feeding, and reproductive adaptations of gastropods vary significantly from one group to another. The class also inhabits an extraordinary diverse habitats including gardens, woodland, deserts, mountains, rivers and lakes, estuaries, mudflats, the rocky intertidal, the sandy sub-tidal, the abyssal depths of the oceans including the hydrothermal vents, and numerous other ecological niches, including parasitic ones.

Sea Slugs, Snails, and Sea Hares @EvaVarga.net

Gastropoda means the belly-foot animals

Snails & Other Shelled Gastropods

Commonly, snails are those species with a single external shell large enough that the soft parts can withdraw completely into it. Those with a shell into which they cannot withdraw are termed limpets.

The marine shelled species of gastropod include species such as abalone, conches, cowries, periwinkles, whelks, and numerous other sea snails. Each produce seashells that are coiled in the adult stage. In a number of families of species, such as all the various limpets, the shell is coiled only in the larval stage, and is a simple conical structure after that.

Sea Slugs, Snails, and Sea Hares @EvaVarga.net

Pictured here is Hermissenda crassicornis

Slugs or Gastropods Without External Shells

Those gastropods without a shell, and those with only a very reduced or internal shell, are usually known as slugs. The various families of slugs are not closely related, however, despite a superficial similarity in the overall body form.

Sea Slugs

The phrase “sea slug” is perhaps most often applied to nudibranchs and they come in an outstanding variety of shapes, colors, and sizes. With translucent bodies, they appear in just about every color on the rainbow. Of course, these bright colors are cause for warning to potential predators that they are poisonous with stinging cells. It is their colors that so fascinate me.

Like all gastropods, they have razor-sharp teeth, called radulas. Most have two pairs of tentacles on their head used primarily for sense of smell, with a small eye at the base of each tentacle. Many have feathery structures (ceratia) on the back, often in a contrasting color. These act as gills.

All species of sea slugs have a selected prey, that is specifically fitted for them to hunt. Amongst the diverse prey are jellyfish, bryozoans, sea anemones, sponges, and other various organisms including other sea slugs.

Sea Slugs, Snails, and Sea Hares @EvaVarga.net

Pictured here is Phyllaplysia taylori

Sea Hares

The sea hares, clade Aplysiomorpha, are often quite large and sometimes described as large sea slugs. They have a small, flat, internal shell composed of proteins. The name derives from their rounded shape and from the two long rhinophores that project upwards from their heads and that somewhat resemble the ears of a hare.

The greatly modified shape of the sea hare and the fact that it orients its body lengthwise along the leaves makes it almost invisible on the sea grass Zostera. An herbivore, it feeds by grazing the film of organisms, mainly diatoms, off sea grass leaves, leaving a characteristic feeding scar on the leaves.

Take it Further

Learn more about Phyla Mollusca in my earlier post, Echinoderms and Molluscs.  You might also be interested in my in-depth zoology curriculum specifically designed for middle school students.

zoology

A Look at the Industrious Beaver: Nature’s Engineers {Middle School Unit Study}

North American Beaver (Castor Canadensis) play a critical role in the ecology of our streams. Their dams create pooling of water upstream, which creates wildlife habitat for many dozens of wetland and slow-moving water species that wouldn’t otherwise be in such riparian habitats.

These industrious mammals provide a fascinating topic for middle school science investigations. Here you will find a variety of resources and materials to engage middle schoolers in real science related to nature’s engineers, Castor canadensis.

A Look at the Industrious Beaver: Nature's Engineers (A Middle School Unit Study) @EvaVarga.net

Beaver Anatomy & Physiology

Beavers are the largest rodents in North America, and they spend most of their time in the water. To protect themselves from the cold and wetness they have waterproof reddish brown or blackish brown hair. They have small, round, brown ears, and powerful back legs for swimming. A beaver’s front legs are not as large or as strong as its back legs.

Beaver skulls and teeth are very big. The two front teeth are orange colored, and they can be up to 5 mm wide and between 20 and 25 mm long. These teeth grow throughout the animal’s life, and they are used for cutting wood. Without these teeth beavers could not cut down or eat trees and wood. Beavers also have see-through eye lids, and closable nostrils and ears for swimming underwater.

Beavers also have anal and castor glands, which they use to mark their territory. These glands are located beneath the tail. The beaver utilizes the oily secretion (castoreum) from these scent glands to also waterproof its thick fur.

The beaver has a thick layer of fat under its skin that helps keep it warm underwater. Beavers have long sharp upper and lower incisor teeth that they use to cut into trees and woody vegetation. These teeth grow throughout the beaver’s life. A beaver’s tail is broad, flat, and covered with large black scales.

A Look at the Industrious Beaver: Nature's Engineers (A Middle School Unit Study) @EvaVarga.net

Beaver Ecology & Natural History

Important natural processes, such as energy flows and chemical cycles, result from the interaction of species within a community. Food webs of trophic (trophic – pertaining to nutrition) interactions among species are one example of how multiple soil-plant, plant-plant, plant-animal, and animal-plant relationships link together within a functioning community. Some species can be highly influential in their communities, even if they occur at relatively low population densities. When the presence and actions of this species tend to form the foundation of how other species relate to each other in the community, we often call the influential plant or animal a keystone species.

“Keystone” is a metaphor equated to the stone in the middle of an arch in a building. Removal of the keystone leads to destabilization if not outright collapse of the other elements that “lean on” or depend upon that keystone.

A Look at the Industrious Beaver: Nature's Engineers (A Middle School Unit Study) @EvaVarga.netThe beaver is often cited as an example of a keystone species because through its dam-building behaviors it has major influences on both the vegetation of an area and the water table. In turn, these factors have strong influences on the abundance and quality of habitat for many other plant and animal species within the community. They engineer, or create, habitat that supports greater biodiversity that would otherwise not exist.

No other animal with the exception of man can significantly alter its habitat to suit its own needs and desires. Native Americans revered the beaver and referred to them as “Little People” for this reason.

In one of the first images of its kind, night-vision cameras recently captured photos of native beavers and invasive nutria working together to build a dam across a channel at Smith and Bybee Wetlands Natural Area in Portland, Oregon.

Beaver Unit Study Resources

Act out a short skit to teach others about the natural history of the beaver – its adaptations for its environment as well as the impact humans have had on it throughout history.

Dress up a volunteer as you learn about the structural and behavioral adaptations of beavers.

Explore the website Beavers: Wetlands & Wildlife to learn more about beavers and their impact on the ecology.

Learn about the history of the Fur Trade and Beaver Ecology including numerous Historical Source Documents.

Learn about Beavers and Climate Change Adaptation Strategies – A Report from Wild Earth Guardians.

Download the Beaver Monitoring App and help scientists study how beavers could be used as a tool for stream restoration and mitigating impacts of climate change.

Reach out to your local watershed associations to learn about watershed monitoring and restoration projects that impact beavers. How can you get involved?

Visit and observe an ecosystem created by beavers in your local area (contact Fish & Wildlife for assistance in locating a dam if you are unfamiliar). Keep a journal of your observations.

zoology

You might also be interested in my 10-week inquiry based science unit introducing middle level students to the study of animals: Zoology: Amazing Animals. Lessons include scientific classification, identifying animal tracks, ecology, and animal behavior.

 

Groovy Lanterns: A Review of a Groovy Lab Subscription Box

In June Groovy Lab in a Box teamed up with Popular Mechanics for Kids and created the popular Groovy Lab subscription box What’s the Matter? The kids and I recently had the opportunity to review this box and just love everything about it.

Groovy Lab Subscription BoxDisclosure: The links in this blog post are affiliate links. 

What’s Inside June’s Groovy Lab Subscription Box – What’s the Matter?

The first of three Popular Mechanics boxes to launch, What’s the Matter? centers around the scientific properties of ice. It is featured in the June issue of Popular Mechanics for Kids.

My son loves unpacking videos and was eager to humor me for an Instagram sneak peak. Here’s a quick look at everything that was inside the Groovy Lab subscription box

The Groovy Lab subscription box is packed with all the materials you’ll need to do the lab activities. The What’s the Matter kit guides kids through an investigation of the states of matter (gas, liquid and solid) and teaches them about the properties of ice. Each monthly kit comes with an engineering challenge and all the materials needed to complete the project, including a groovy lab notebook that outlines all the activity procedures, asks leading questions, and provides a space for your young STEMist to record their observations.Groovy Lab Subscription Box "What's the Matter?"

Groovy Lab in a Box was named a winner of the Popular Mechanics 2014 Toy Awards, which recognizes the best new toys of the year with a heavy emphasis on STEM-related skills and outdoor or imaginative play. Recipients of the Toy Awards encourage problem solving, inspire creativity, spark imagination, and spur mischief. And they’re fun!

Our Favorite What’s the Matter Activity

There are several well designed activities in the Groovy Lab subscription box. Each activity is purposeful a it develops student understanding of the material to ensure success in the culminating activity. This was our favorite activity, the design challenge whereby students were asked to design the lighting of a “groovy” ice hotel and build a portable lantern out of ice.

This was a fun challenge to undertake and my daughter delighted in brainstorming ideas and then following through with her vision. She chose an aluminum tea tin for the structure as it was rectangular and inside placed a small measuring cup (a little larger than a shot glass) for the interior space for the light. She used botanicals and colored layers for appeal.groovylanterns

There were a couple of small challenges along the way, the biggest of which was getting the lantern out of the tin once it had frozen. The rim of the tin was indented a little to accommodate a lid and it was thereby necessary to melt more of the external side of the lantern than she had desired. Not deterred, “I want to do this again!”

July’s Groovy Lab Subscription Box – Out To Launch!

Do your STEMists love catapults? The second of three Popular Mechanics boxes, July’s Out to Launch is the perfect fit for them! In the Out To Launch box, your children will learn about the forces of catapults and things that are elastic.

The Engineering Design Challenge will test their engineering skills as they build several types of catapults, using only supplies from their Groovy Lab in a Box. As always, the Out To Launch box will have a groovy lab notebook where your kids can read about the investigations and design challenge. Plus, all subscribers get access to the Beyond…in a Box web portal for additional learning and fun.

Be sure to start your subscription today with FREE SHIPPING so you can receive “Out To Launch” before it ships on July 28th. Save $10 on a 3, 6, or 12 month subscription to Groovy Lab in a Box.